Characterization of Smoothness Properties of Functions by Means of Their Degree of Approximation by Splines

O. SHISHA*
Mathematics Research Center, Code 7840, Naval Research Laboratory, Washington, D.C. 20375

1
One of the major achievements of approximation theory is the following:
Theorem 1. (D. Jackson [5], S. N. Bernstein [1], A. Zygmund [10]). Let f be a real function with domain $(-\infty, \infty)$, and period 2π. Let q be a positive number, let p be the largest integer smaller than q, and set $\alpha=q-p$, so that $q=p+\alpha, 0<\alpha \leqslant 1$. A necessary and sufficient condition that there exist a constant A, and for $n=1,2, \ldots$ a real trigonometric polynomial

$$
\begin{equation*}
f_{n}(x) \equiv a_{0}^{(n)}+\sum_{k=1}^{n} a_{k}^{(n)} \cos k x+b_{k c}^{(n)} \sin k x \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sup _{-\infty<x<\infty}\left|f(x)-f_{n}(x)\right| \leqslant A / n^{q}, \tag{2}
\end{equation*}
$$

is
(i) if q is not an integer, that $f^{(p)}$ exist throughout $(-\infty, \infty)$, and satisfy there a Lipschitz condition of order α;
(ii) if q is an integer, that $f^{(p)}$ (i.e., $f^{(q-1)}$) exist and be continuous in $(-\infty, \infty)$, and satisfy, for some constant B,

$$
\begin{equation*}
\left|f^{(p)}(x)-2 f^{(p)}(x+h)+f^{(p)}(x+2 h)\right| \leqslant B h \tag{3}
\end{equation*}
$$

whenever $-\infty<x<x+2 h<\infty$.
The purpose of the present article is to prove a result of exactly the same form as Theorem 1 in which the trigonometric polynomials (1) are replaced by splines f_{n}, where n refers not to their degree but to the number of knots, the knots being equidistant. As to the degree k of the splines, we have

[^0]complete freedom in its choice as long as $q<k+1$. We include, however, also the case $q \geqslant k+1$.

2

Theorem 2. Let $-\infty<a<b<\infty$, and let f be a real function with domain $[a, b]$. Let q be a positive number, k an integer $\geqslant 1$, and define p and α as in Theorem 1. A necessary and sufficient condition that $(*)$ there exist a constant A, and for $n=1,2, \ldots$ a real function f_{n} which in each interval

$$
I_{n, j}=\left[a+(b-a) n^{-1}(j-1), a+(b-a) n^{-1} j\right], \quad j=1,2, \ldots, n,
$$

coincides with a polynomial of degree $\leqslant k$, and which has $a(k-1)$ th derivative throughout (a, b) such that
is

$$
\sup _{a \leqslant x \leqslant b}\left|f(x)-f_{n}(x)\right| \leqslant A / n^{q}
$$

(i) if q is not an integer and $q<k+1$, or if $q=k+1$, that $f^{(p)}$ exist ${ }^{1}$ throughout $[a, b]$ and satisfy there a Lipschitz condition of order α;
(ii) if q is an integer $<k+1$, that $f^{(p)}$ (i.e., $f^{(q-1)}$) exist and be continuous in $[a, b]$, and satisfy, for some constant B, the inequality (3) whenever $a \leqslant x<x+2 h \leqslant b ;$
(iii) if $q>k+1$, that f coincide in $[a, b]$ with some polynomial of degree $\leqslant k$.

Proof. Necessity. If $q \leqslant k$, necessity follows from the Lemma below, since \tilde{p} of the Lemma is $\leqslant k-1$. If $k<q \leqslant k+1$, it follows from Theorem 1 of [6]. Finally, if $q>k+1$, it follows from [3] (Korollar, p. 130).

Sufficiency. We may clearly assume $q \leqslant k+1$. Whether or not q is an integer, if $f^{(p)}$ exists throughout $[a, b]$ and satisfies there a Lipschitz condition of order α, then, by [2, Corollaries 1 and 2, p. 233], ($*$) of Theorem 2 holds. Suppose now q is an integer $<k+1, f^{(p)}$ exists and is continuous in $[a, b]$, and satisfies (3) whenever $a \leqslant x<x+2 h \leqslant b$. From Theorem 2 of [7] [(d) implies (a)] it follows that, for $n=1,2, \ldots$, there exists a real function F_{n} which in each interval $I_{n, j}, j=1,2, \ldots, n$, coincides with a polynomial of degree $\leqslant k-p$, and which has a $(k-p-1)$ th derivative throughout (a, b) such that $\max _{a \leqslant x \leqslant b}\left|f^{(p)}(x)-F_{n}(x)\right| \leqslant A^{*} n^{-1}, A^{*}$ being a constant. If $p=0$, we are through; hence assume $p>0$. For $n=1,2, \ldots$, let G_{n} be a real
${ }^{1}$ If $p \geqslant 1$, then $f^{(p)}$ at a and at b, the end points of the domain of f, is understood to be a one sided p th derivative. Similarly below.
function with domain $[a, b]$ which in each $I_{n, j}, j=1,2, \ldots, n$, coincides with a polynomial of degree $\leqslant k$, and for which $G_{n}^{(p)}=F_{n}(x)$ throughout (a, b). Then $\left|f^{(p-1)}(y)-G_{n}^{(p-1)}(y)-\left\{f^{(p-1)}(x)-G_{n}^{(p-1)}(x)\right\}\right| \leqslant A^{*} n^{-1}(y-x)$ whenever $a \leqslant x<y \leqslant b$. By the above corollaries in [2], for $n=1,2, \ldots$ there is a real function g_{n} with domain $[a, b]$, which in every $I_{n, j}, j=1,2, \ldots, n$, coincides with a polynomial of degree $\leqslant k$ and which has a $(k-1)$ th derivative throughout (a, b) such that $\max _{a \leqslant x \leqslant b}\left|f(x)-G_{n}(x)-g_{n}(x)\right| \leqslant$ A / n^{p+1}, A being a constant (independent of n). We can now take $f_{n}=G_{n}+g_{n}$, $n=1,2, \ldots$. This completes the proof.

Lemma. Let f be a real function with domain $[a, b](-\infty<a<b<\infty)$, let k and p be integers $\geqslant 0$, and let $0<\alpha \leqslant 1$. If $\alpha=1$ and $k=p+1$, let N be the set of all numbers $2^{u} 3^{v}, u=0,1,2, \ldots, v=0,1,2, \ldots$. Otherwise, let $N=\left\{2^{0}, 2^{1}, 2^{2}, \ldots\right\}$. If $\alpha=1$ and $k \neq p+1$, let $\tilde{p}=p+1$. Otherwise, let $\tilde{p}=p$. Suppose there is a constant A, and for every $n \in N$ a real function f_{n} with domain $[a, b]$ for which $f_{n}^{(\tilde{p})}$ exists throughout (a, b), which in each interval $I_{n, j}=\left[a+(b-a) n^{-1}(j-1), a+(b-a) n^{-1} j\right], j=1,2, \ldots, n$, coincides with a polynomial of degree $\leqslant k$ such that

$$
\sup _{a \leqslant x \leqslant b}\left|f(x)-f_{n}(x)\right| \leqslant A n^{-(p+\alpha)}
$$

Then $f^{(p)}$ exists throughout $[a, b]$. If $\alpha<1, f^{(p)}$ satisfies there a Lipschitz condition of order α. If $\alpha=1, f^{(p)}$ is continuous in $[a, b]$, and there is a constant B such that $\left|f^{(p)}(x)-2 f^{(p)}(x+h)+f^{(p)}(x+2 h)\right| \leqslant B h$ whenever

$$
a \leqslant x<x+2 h \leqslant b
$$

Proof. If $\alpha=1$ and $k=p+1$, let d be an integer $\geqslant 0$. Otherwise, set $d=0$. Let $V_{0, d}(x) \equiv f_{3^{a}}(x)$, and for $\nu=1,2, \ldots$, let

$$
V_{\nu, a}(x) \equiv f_{2^{\nu 3^{a}}}(x)-f_{2^{v-1} 3^{3}}(x)
$$

Then $\sum_{\nu=0}^{\infty} V_{\nu, d}(x)$ converges to $f(x)$ in $[a, b]$. Also, using the sup norm over $[a, b]$,

$$
\begin{gather*}
\left\|V_{v, a}\right\| \leqslant\left\|f_{2^{3^{d}}}-f\right\|+\left\|f-f_{2^{v-1} 3^{d}}\right\| \leqslant C\left(2^{v} 3^{d}\right)^{-(p+\alpha)} \tag{4}\\
v=1,2, \ldots ; \quad C=A\left(1+2^{p+\alpha}\right)
\end{gather*}
$$

Using W. A. Markoff's inequality [9, p. 36] in each of the intervals $I_{2^{\nu}{ }_{3}, j}$, $j=1,2, \ldots, 2^{v} 3^{d}$, we obtain, for $\nu=1,2, \ldots$, and $h=0,1, \ldots, p$,

$$
\begin{align*}
\left\|V_{\nu, d}^{(h)}\right\| & \leqslant\left[2^{\nu+1} 3^{d} /(b-a)\right]^{h}\left\|V_{\nu, d}\right\| \prod_{j=0}^{n-1}\left(k^{2}-j^{2}\right) /(2 j+1) \\
& \leqslant C[2 /(b-a)]^{n}\left[\prod_{j=0}^{n-1}\left(k^{2}-j^{2}\right) /(2 j+1)\right]\left(2^{\nu} 3^{d}\right)^{n-p-\alpha} \tag{5}
\end{align*}
$$

where $\prod_{j=0}^{h-1}$ means 1 if $h=0$. Therefore, for $h=0,1, \ldots, p, \sum_{v=0}^{\infty}\left\|V_{v, d}^{(h)}\right\|$ converges, and therefore $\sum_{\nu=0}^{\infty} V_{\nu, d}^{(h)}(x)$ converges uniformly in $[a, b]$. Hence throughout $[a, b], f^{(p)}$ exists and equals $\sum_{\nu=0}^{\infty} V_{v, a}^{(p)}(x)$. Let D denote the coefficient of $\left(2^{\nu} 3^{d}\right)^{h-p-\alpha}$ in the extreme right member of (5), for $h=p$, and let $D^{*}=D 2^{-\alpha}\left(1-2^{-\alpha}\right)$. Then throughout $[a, b]$, for $m=0,1,2, \ldots$, $\left|f^{(p)}(x)-\sum_{p=0}^{m} V_{\nu, d}^{(p)}(x)\right| \leqslant \sum_{\nu=m+1}^{\infty}\left\|V_{\nu, d}^{(p)}\right\| \leqslant D^{*}\left(2^{m} 3^{d}\right)^{-\alpha}$. In particular, if $f^{(p)}(x) \not \equiv 0$, as we can and shall assume, $k \geqslant p$. Given $n \in N$, say $n=2^{m} 3^{\delta}, m$ and δ nonnegative integers, set $V_{n}(x) \equiv \sum_{v=0}^{m} V_{v, \hat{\delta}}^{(p)}(x)$, and observe that
in each interval $I_{n, j}, j=1,2, \ldots, n, V_{n}(x)$ coincides with a polynomial of degree $\leqslant k-p ; \sup _{a \leqslant x \leqslant b}\left|f^{(p)}(x)-V_{n}(x)\right| \leqslant D^{*} n^{-\alpha}$, and, so, $f^{(p)}$ is continuous in $[a, b]$; if $\alpha=1$ and $k \neq p+1$, then $V_{n}(x)$ is differentiable throughout (a, b).

We set $U_{\nu}(t) \equiv V_{\nu, 0}(t), \nu=0,1,2, \ldots$
(A) Suppose $\alpha<1, p=0$, so that $d=0$. Let $a \leqslant x<y \leqslant b$, and let \tilde{n} be the smallest positive integer n satisfying $2^{n}(y-x) \geqslant b-a$. We have:

$$
\begin{equation*}
|f(y)-f(x)|=\left|\sum_{\nu=0}^{\infty} U_{\nu}(y)-U_{\nu}(x)\right| \leqslant \sum_{\nu=0}^{n-1}\left|U_{\nu}(y)-U_{\nu}(x)\right|+2 \sum_{\nu=\tilde{n}}^{\infty}\left\|U_{\nu}\right\| . \tag{7}
\end{equation*}
$$

Let $\nu \geqslant 0$. We show

$$
\begin{equation*}
\left|U_{\nu}(y)-U_{\nu}(x)\right| \leqslant 2^{v+1} k^{2}(b-a)^{-1}\left\|U_{\nu}\right\|(y-x) \tag{8}
\end{equation*}
$$

Set

$$
\begin{equation*}
x_{j}=a+(b-a) 2^{-\nu} j, \quad j=0,1, \ldots, 2^{\nu} \tag{9}
\end{equation*}
$$

(a) Assume both x and y belong to some interval $\left[x_{j-1}, x_{j}\right], 1 \leqslant j \leqslant 2^{\nu}$. By A. A. Markoff's inequality [9, p. 36] applied to that interval,

$$
\left|U_{\nu}(y)-U_{\nu}(x)\right|=(y-x)\left|U_{\nu}^{\prime}(z)\right| \leqslant 2^{\nu+1} k^{2}(b-a)^{-1}\left\|U_{\nu}\right\|(y-x), x<z<y .
$$

(b) Suppose the assumption in (a) does not hold. Let

$$
x_{r-1} \leqslant x<x_{r} \cdots \leqslant x_{r+s}<y \leqslant x_{r+s+1}, \quad 1 \leqslant r<2^{\nu}, \quad s \geqslant 0 .
$$

Then (with $\sum_{j=1}^{s}$ meaning 0 if $s=0$), we have by A. A. Markoff's inequality,

$$
\begin{aligned}
& \left|U_{\nu}(y)-U_{\nu}(x)\right| \\
& \left.\quad \leqslant\left|U_{\nu}(y)-U_{\nu}\left(x_{r+s}\right)\right|+\left[\sum_{j=1}^{s} \mid U_{\nu}\left(x_{r+j}\right)-U_{\nu}\left(x_{r+j-1}\right)\right]\right]+\left|U_{\nu}\left(x_{r}\right)-U_{\nu}(x)\right| \\
& \quad \leqslant 2^{v+1} k^{2}(b-a)^{-1}\left\|U_{\nu}\right\|\left[y-x_{r+s}+\left\{\sum_{j=1}^{s} x_{r+j}-x_{r+j-1}\right\}+x_{r}-x\right] \\
& \quad=2^{\nu+1} k^{2}(b-a)^{-1}\left\|U_{\nu}\right\|(y-x) .
\end{aligned}
$$

Setting $E=\max \left(C,\left\|f_{1}\right\|\right)$, we have from (7), (8) and (4):

$$
\begin{aligned}
& |f(y)-f(x)| \\
& \leqslant E k^{2}(b-a)^{-1}(y-x) \sum_{\nu=0}^{\tilde{n}-1} 2^{\nu+1} 2^{-\alpha \nu}+2 E \sum_{\nu=\tilde{n}}^{\infty} 2^{-\alpha \nu} \\
& =2 E k^{2}(b-a)^{-1}(y-x)\left[2^{(1-\alpha) \tilde{n}}-1\right]\left[2^{1-\alpha}-1\right]^{-1}+2 E 2^{-\alpha \tilde{n}}\left(1-2^{-\alpha}\right)^{-1} \\
& \leqslant F\left[(y-x) 2^{(1-\alpha) \tilde{n}}+2^{-\alpha \tilde{n}}\right],
\end{aligned}
$$

where $\bar{F}=\max \left[2 E k^{2}(b-a)^{-1}\left(2^{1-\alpha}-1\right)^{-1}, 2 E\left(1-2^{-a}\right)^{-1}\right]$.
By definition of $\tilde{n}, 2^{n}(y-x) \geqslant b-a, 2^{n}(y-x) \leqslant 2(b-a)$. So $(y-x)^{-\alpha}\left[(y-x) 2^{(1-\alpha) \tilde{n}}+2^{-\alpha \tilde{n}}\right] \leqslant\{2(b-a)\}^{i-\alpha}+(b-a)^{-\alpha}$. Hence $|f(y)-f(x)| \leqslant L(y-x)^{\alpha}$, with $L=F\left[\{2(b-a)\}^{1-x}+(b-a)^{-\alpha}\right]$.
(B) Suppose $\alpha<1, p>0$. By (6) and by part (A) applied to $f^{(w)}$, the latter satisfies in $[a, b]$ a Lipschitz condition of order α.
(C) Suppose $\alpha=1, p=0, k \neq 1$. Let $a \leqslant x<x+2 h \leqslant b$, and let \tilde{m} be the largest positive integer n satisfying $2^{n} h \leqslant b-a$. We have

$$
\begin{align*}
\mid f(x) & -2 f(x+h)+f(x+2 h) \mid \\
& =\left|\sum_{v=0}^{\infty} U_{\nu}(x)-2 U_{\nu}(x+h)+U_{\nu}(x+2 h)\right| \\
& \leqslant \sum_{v=0}^{\tilde{m}-1}\left|U_{\nu}(x)-2 U_{\nu}(x+h)+U_{v}(x+2 h)\right|+4 \sum_{v=\tilde{m}}^{\infty}\left|U_{v}\right| \|_{0} \tag{10}
\end{align*}
$$

Let $\nu \geqslant 0$. We show

$$
\begin{gather*}
\left|U_{\nu}(x)-2 U_{\nu}(x+h)+U_{\nu}(x+2 h)\right| \leqslant G h^{2} 2^{v} \\
G=(8 / 3) E(b-a)^{-2} k^{2}\left(k^{2}-1\right) \tag{11}
\end{gather*}
$$

Now

$$
\begin{aligned}
U & =U_{\nu}(x)-2 U_{\nu}(x+h)+U_{\nu}(x+2 h) \\
& =U_{\nu}(x+2 h)-U_{\nu}(x+h)-\left\{U_{\nu}(x+h)-U_{\nu}(x)\right\} \\
& =h\left(U_{\nu}^{\prime}(z)-U_{\nu}^{\prime}(y)\right)
\end{aligned}
$$

where $x<y<x+h<z<x+2 h$. If [using the notation (9)] both y and z lie in some $\left[x_{j-1}, x_{j}\right], 1 \leqslant j \leqslant 2^{\nu}$, then $U=h(z-y) U_{p}^{\prime \prime}(w), y<w<z$, and by W. A. Markoff's inequality applied to $\left[x_{j-1}, x_{j}\right]$,

$$
\begin{equation*}
\left|U_{\nu}^{\prime \prime}(w)\right| \leqslant 2^{2 \nu+2}(b-a)^{-2} 3^{-1} k^{2}\left(k^{2}-1\right)\left\|U_{\nu}\right\|, \tag{12}
\end{equation*}
$$

which, by (4), implies (11). If y and z do not belong to the same $\left[x_{j-1}, x_{j}\right]$, let $x_{r-1} \leqslant y<x_{r} \cdots \leqslant x_{r+s}<z \leqslant x_{r+s+1}, \quad 1 \leqslant r<2^{\nu}, s \geqslant 0$. By (4) and inequalities similar to (12) we get again (11), since

$$
\begin{aligned}
& \left|U_{\nu}^{\prime}(z)-U_{\nu}^{\prime}(y)\right| \\
& \leqslant\left|U_{\nu}^{\prime}(z)-U_{\nu}^{\prime}\left(x_{r+s}\right)\right|+\left[\sum_{j=1}^{s}\left|U_{\nu}^{\prime}\left(x_{r+j}\right)-U_{\nu}^{\prime}\left(x_{r+j-1}\right)\right|\right]+\left|U_{\nu}^{\prime}\left(x_{r}\right)-U_{\nu}^{\prime}(y)\right| \\
& \leqslant(4 / 3) E(b-a)^{-2} k^{2}\left(k^{2}-1\right) 2^{v}\left[z-x_{r+s}+\left\{\sum_{j=1}^{s} x_{r+j}-x_{r+j-1}\right\}+x_{r}-y\right] \\
& \leqslant G h 2^{\nu} .
\end{aligned}
$$

By (10), (11) and (4), $|f(x)-2 f(x+h)+f(x+2 h)| \leqslant G h^{2} 2^{\tilde{m}}+8 C 2^{-\tilde{m}}$. Now $(b-a) /(2 h)<2^{\tilde{m}} \leqslant(b-a) / h$, and hence

$$
|f(x)-2 f(x+h)+f(x+2 h)| \leqslant\left[G(b-a)+16 C(b-a)^{-1}\right] h
$$

(D) More generally, suppose $\alpha=1, k \neq p+1$. In view of (6), we can apply the Lemma to $f^{(p)}$, with k replaced by $k-p$ and with p of the Lemma taken as 0 , and obtain the desired conclusion.
(E) Suppose $\alpha=1, p=0, k=1$. The method used in [8], p. 397, to prove sufficiency, clearly establishes also the Lemma in the present case. Namely, let $a \leqslant x<x+2 h \leqslant b$, and let n_{0} be the largest $n \in N$ (i.e., n of the form $\left.2^{u} 3^{v} ; u=0,1, \ldots, v=0,1, \ldots\right)$ for which $[x, x+2 h]$ is contained in some $I_{n, j}, 1 \leqslant j \leqslant n$. Then $2 h>(b-a)\left(6 n_{0}\right)^{-1}$. For, otherwise, if, say, $[x, x+2 h] \subseteq I_{n_{0}, j_{0}}, 1 \leqslant j_{0} \leqslant n_{0}$, then $[x, x+2 h]$ would lie either in one of
the two closed halves of $I_{n_{0}, j_{0}}$ or in the (open) middle third of $I_{n_{0}, j_{0}}$. In each case, the maximality of n_{0} is contradicted. By the linearity of $f_{n_{0}}$ in $[x, x+2 h]$, we have

$$
\begin{aligned}
\mid f(x)- & 2 f(x+h)+f(x+2 h) \mid \\
= & \mid\left\{f(x)-f_{n_{0}}(x)\right\}-2\left\{f(x+h)-f_{n_{0}}(x+h)\right\} \\
& +\left\{f(x+2 h)-f_{n_{0}}(x+2 h)\right\} \\
\leq & 4 A / n_{0} \leqslant 48 A(b-a)^{-1} h .
\end{aligned}
$$

(F) Suppose, finally, $\alpha=1, k=p+1$. In view of (6), we can apply the Lemma to $f^{(p)}$, with k replaced by $k-p$ and with p of the Lemma taken as 0 .

References

1. S. N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné, Mém. Acad. Royale Belg. 4 (1912), 1-104.
2. C. De Boor, On uniform approximation by splines, J. Approximation Theory 1 (1968), 219-235.
3. D. Gaier, Saturation bei Spline-Approximation und Quadratur, Numer. Math. 16 (1970), 129-140.
4. D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Dissertation, Göttingen, 1911.
5. D. Jackson, "The Theory of Approximation," American Mathematical Society, New York, 1930.
6. F. Richards, On the saturation class for spline functions, Proc. Amer. Math. Soc. 33 (1972), 471-476.
7. K. Scherer, On the best approximation of continuous functions by splines, SIAM J. Numer. Anal. 7 (1970), 418-423.
8. O. Shisha, A characterization of functions having Zygmund's property, J. Approxima-tion Theory 9 (1973), 395-397.
9. J. TODD, "Introduction to the Constructive Theory of Functions," Academic Press, New York, 1963.
10. A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76.

[^0]: * Present address: Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881.

