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Characterization of Smoothness Properties of Functions
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One of the major achievements of approximation theory is the following:

Treorem 1. (D. Jackson [5], S. N. Bernstein [1], A. Zygmund [10]). Ler
[ be a real function with domain (— o0, ), and period 2. Let g be a positive
number, let p be the largest integer smaller than q, and set o = g — p, s0 that
g=p+a 0 <a<<1. 4 necessary and sufficient condition that there exist
a constant A, and for n = 1, 2,... a real trigonometric polynomial

£ = a® + ¥ a? cos kx + b sin kx ()
k=1
such that
sup [f(x) — fulx)] < A/n?, 2

is

(i) if qisnot an integer, that P exist throughout (— co, <), and satisfy
there a Lipschitz condition of order «;

(i) if q is an integer, that P (i.e., f«V) exist and be continuous in
{(— o0, o), and satisfy, for some constant B,

| f®(x) — 2f PN(x + k) + fP(x -+ 2h)| < Bh 3

whenever — 0 < x < x -~ 2k < 0.

The purpose of the present article is to prove a result of exactly the same
form as Theorem 1 in which the trigonometric polynomials (1) are replaced
by splines f,, , where n refers not to their degree but to the number of knots,
the knots being equidistant. As to the degree k of the splines, we have
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complete freedom in its choice as long as ¢ << k 4 1. We include, however,
also the case g = k + 1.

2

THEOREM 2. Let — o0 <<a <b << oo, and let f be a real function with
domain [a, b). Let q be a positive number, k an integer == 1, and define p and «
as in Theorem 1. A necessary and sufficient condition that (x) there exist a
constant A, and for n = 1, 2,... a real function f, which in each interval

I’n,i = [a + (b - a) n—l(j - 1)9 a + (b - a) n—j]n J = 1, 25"-9 n,

coincides with a polynomial of degree < k, and which has a (k — 1) th deriva-
tive throughout (a, b) such that

sup | f(x) — fu(x)] < A/n?,
. a<a<b
is
(1) if qisnot an integer and q <k + 1, 0rif g = k -+ 1, that f® exist
throughout [a, b] and satisfy there a Lipschitz condition of order «;

(i) if q is an integer <k -+ 1, that f'P (i.e., fUV) exist and be con-~
tinuous in [a, b], and satisfy, for some constant B, the inequality (3) whenever
a<x<<x-2h<b;

(iii) ifq > k + 1, that f coincide in [a, b] with some polynomial of degree
<k.

Proof. Necessity. If q <k, necessity follows from the Lemma below,
since p of the Lemma is < k — 1. If ¥k < ¢ < k + 1, it follows
from Theorem 1 of [6]. Finally, if ¢ > k - 1, it follows from [3] (Korollar,
p. 130).

Sufficiency. We may clearly assume g <C k + 1. Whether or not g is an
integer, if f » exists throughout [a, b] and satisfies there a Lipschitz condition
of order a, then, by [2, Corollaries 1 and 2, p. 233], (%) of Theorem 2 holds.
Suppose now ¢ is an integer << k 4 1, f® exists and is continuous in [q, b],
and satisfies (3) whenever a << x < x 4 2h << b. From Theorem 2 of [7]
[(d) implies (a)] it follows that, for n = 1, 2,..., there exists a real function F,,
which in each interval 7,,;, j = 1, 2,..., n, coincides with a polynomial of
degree <C k — p, and which has a (k — p — 1) th derivative throughout (g, b)
such that maX,c,< | fP(x) — F(x)] << A*n~', A* being a constant. If
p = 0, we are through; hence assume p > 0. Forn = 1, 2,..., let G,, be a real

1If p > 1, then f® at @ and at b, the end points of the domain of £, is understood to
be a one sided pth derivative. Similarly below.
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function with domain [a, 5] which in each I, ;, j = 1, 2,..., n, coincides with
a polynomial of degree < k, and for which G’ = F,{x) throughout (g, b).
Then |f¥=(y) — G U(y) — {f*D(x) — GP ) < Ay —x)
whenever a << x << y < b. By the above corollaries in [2], forn = 1, 2,... there
is a real function g,, with domain [a, b], which in every /,,;,j=1,2,..., i,
coincides with a polynomial of degree < k4 and which has a (k — D} th
derivative throughout (g, b) such that max,c,<; | f(xX) — G, (x) — g,(x) <
A/n?, 4 being a constant (independent of n). We can now take f, = G, - g,
n =1, 2,.... This completes the proof.

LemMMA. Let f be a real function with domain [a, b] (— 0 < a << b << 0},
let k and p be integers = 0, and let 0 < o < 1. [fa=landk =p -+ 1, let N
be the set of all numbers 2%3°, u=20,1,2,...,v =0, 1, 2,.... Otherwise, ler
N={2%2L22.  If a=1and k %p+ 1, let p =p -+ 1. Otherwise, let
P = p. Suppose there is a constant A, and for every ne€ N a real function [,
with domain [a, b] for which f'P exists throughout (a, b), which in each interval
Liy=lae+®—anr(j—1,a+ & —a)njlj=1,2,.., n, coincides
with a polynomial of degree < k such that

sup | f(x) — fu(¥)] < A=+,

a<z<d

Then fP) exists throughout la, bl. If o << 1, [P satisfies there a Lipschitz
condition of order o. If o = 1, f P is continuous in [a, b, and there is a constant
B such that | fP(x) — 2fP(x + h) + f®(x + 2h)| < Bh whenever

a<x<x-+2h<bh.

Proof. If « =1 and k =p + 1, let d be an integer == 0. Otherwise, set
d=10. Let V; 4(x) = faa(x), and for v = 1, 2,..., let

Vv,d(x) = .fgvgd(x) - _f2v~13d(x)'

Then Y., V, «(x) converges to f(x) in [a, b]. Also, using the sup norm
over [a, b},

[ V50l < U fgs — Sl A L — Fpmaga | < C73H~124),

Y
y=1,2,.; C= A + 20,
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Using W. A. Markoff’s inequality [9, p. 36] in each of the intervals Iyvse ;,
ji=12,..,23% we obtain, forv =1,2,..,and 1 =0, 1,..., p,

| V) < 23 — @ I Vil T 68— /Q+ D
h—1
< C2/b — AP [[I k2 — 9/ + 1)] @3-, (5)

where 1—[;:; means 1 if 4 = 0. Therefore, for & =0, 1,...,p, >, 0|l V||
converges, and therefore Y, Vi"(x) converges uniformly in [a, b]. Hence
throughout [a, b], f'» exists and equals Y, o V{%)(x). Let D denote the
coefficient of (2"3%)%~?-« in the extreme right member of (5), for 2z = p, and let
D* = D241 — 2-%). Then throughout [a, b], for m = 0, 1, 2,...,
| fPG) — X% Vi) < Dlmiall V%I < D*2739 ™ In particular, if
F®(x) == 0, as we can and shall assume, k > p. Givenn e N, say n = 2™3%, m
and & nonnegative integers, set V,(x) = Y., V{?)(x), and observe that

in each interval I, ;, j =1, 2,..., n, V,,(x) coincides with a poly-
nomial of degree <k — p; sup,<e<n | fOUX) — Vu(x)| << D*n,
and, so, £ is continuous in [g, b]; if « =1 and ks£p+ 1, (6)
then V,(x) is differentiable throughout (a, b).

We set Ut) =V, (), v=0,1,2,...

(A) Supposex <1,p=0,so0thatd =0.Leta <<x <y < b, and let
# be the smallest positive integer n satisfying 2"(y — x) > b — a. We have:

fi—1

> U0~ U <3 1 U) — Ul 2 Y | v}
v=0 =0 ve=1i 7)

(9 — ] =

Let v > 0. We show

| U(y) — U(0)] <277k%b — o)t II‘ U, Iy — ). (®)
Set |
x;=a+GB—-—a2v, j=0,1,.2" ©)

(a) Assume both x and y belong to some interval [x;_;,x;], 1 << j<<2"
By A. A. Markoff’s inequality [9, p. 36] applied to that interval,

FU) - U@ = (-0l U@ <20 -a | U Iy -x), x <z <y.
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(b) Suppose the assumption in {a) does not hold. Let
Xog X < Xpo KXpay <P K Xppgpr, <<, 520
Then (with ZLl meaning 0 if s = 0), we have by A. A. Markoff’s inequality,
[ ULp) — Ux)]

<1 0) = Ul | 3 U = G-l | 1 ) = U0

< 27K — &) U, | [y A

s |
Z Kpag = Xrag— + x = xJ
=1

= 2D — A O, (9 — ).

Setting £ = max (C, || f1 |)), we have from (7), (8) and (4):

(9 — f)

a1 ©
< E(b —ay ™ (y —x) ), 212~ L 2E ) 27

v=0 v=Ff

— 2ERp — a)t (y — 02007 — (][22 — 1] 4 2E2-oR(1 — 2-)
< Fl(y — ) 2097 4 27,

where F — max [2Ek¥b — g)t (1= — 1)1, 2E(1 — 2--1],

By definition of # 2%y —x)>=b—a 2y —x) <20 —a). So
(y =0 [(y — x) 207 4 277 < 2(b — @)p> + (b — @)™  Hence
(7)) — F®] < Ly — %), with L = F[{2(b — a)}* = + (b — o).

(B) Suppose « << 1, p > 0. By (6) and by part (A) applied to f®, the
latter satisfies in [, b] a Lipschitz condition of order o.

(C) Suppose a=1,p=0,k 41 Let a <x <x+ 24 <54, and let
# be the largest positive integer n satisfying 2k < b — a. We have

[ f(x) — 2f(x + ) + f(x + 2h)]

S UL — 2U,0x - ) + Ui + 28)

-1

<Y IUM 20+ By - U+ 2 44T T (10)
=0 v=m1
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Let v > 0. We show

| Ufx) — 2Uy(x + h) + Uyx + 2h)| < Gh22,

1D
G = (8/3) E(b — a)* k(K> — 1).

Now
U=U/x) = 20U x + ) + Ufx + 2h)
= Ufx + 2 — USx + ) —{USx + h) — U(x)}
= WU/ (@) — U,/ (»)),

where x <y < x + & < z < x + 2h. If [using the notation (9)] both y and z
lie in some [x;_;, x;], | <j <2, then U= h{z — y) Ul(w),y <w < z, and
by W. A. Markoff’s inequality applied to [x;_4 , x;1,

| Uy < 22730 — @) 373k — DL U, |, (12)

which, by (4), implies (11). If y and z do not belong to the same [x;_, , x;], let
Xy P <Xy CXpyy < Z K Xppon, 17 <2,5s>0. By (4) and
inequalities similar to (12) we get again (11), since

| U,,’(Z) - le(y)l
<IU@) — U/ + [le U,/ (xr45) — Uv'(xr+j—1)l] +1 U,/ (x) — U/ ()

s
Z Xrys — Xp-1
J=1

< @3 E® — a) 2 k¥ k> — 1) 2 [z — Xy

+ Xy — y]
< Gh2".

By (10), (11) and (4), | f(x) — 2f (x + h) + f(x + 2h)| < Gh?2™ + 8C27™™.
Now (b — a)/(2h) < 2™ < (b — a)/h, and hence

| f(x) = 2f(x 4 ) + f(x -+ 2B)| < [G(b — a) + 16C(b — a)™] h.

(D) More generally, suppose o = 1, k 5= p + 1. In view of (6), we can
apply the Lemma to f‘#, with k replaced by & — p and with p of the Lemma
taken as 0, and obtain the desired conclusion.

(E) Suppose o« =1, p =0, k = 1. The method used in [8], p. 397, to
prove sufficiency, clearly establishes also the Lemma in the present case.
Namely, let a << x < x 4 2k < b, and let n, be the largest ne N (i.e., n of
the form 243%; u4 = 0, 1,..., v = 0, 1,...) for which [x, x + 2#k] is contained in
some I,;, 1 <j<n Then 2k > (b — a)(6ny,)L. For, otherwise, if, say,
[x, x -+ 2H] C Iopi,» 1 <Jjo <y, then [x, x -+ 2A] would lie either in one of
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the two closed halves of I, ; or in the (open) middle third of 7, ; . In each

ca

se, the maximality of n, is contradicted. By the linearity of f,, in [x, x + 24},

we have

th
as

10

64

| f(x) — 2f(x + h) + f(x + 2h)]
= {f () — [} — 20/ (x + B) — fo (x 1 A)}
+ G+ 20) — fo(x + 2R}
< 4A/n, < 484(b — a) .

(F) Suppose, finally, « = 1, k = p + 1. In view of (6), we can apply
e Lemma to £, with k replaced by & — p and with p of the Lemma taken
0.
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