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Characterization of Smoothness Properties of Functions
by Means of Their Degree of Approximation by Splines
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One of the major achievements of approximation theory is the following:

THEOREM 1. (D. Jackson [5], S. N. Bernstein [1], A. Zygmund [10)). Let
f be a real function with domain (- co, (0), and period 271". Let q be a positive
number, let p be the largest integer smaller than q, and set ex = q - p, so that
q = p + ex, 0 < ex ~ 1. A necessary and sufficient condition that there exist
a constant A, and for n = 1,2,... a real trigonometric polynomial

such that

is

n

fn(x) - a~n) + L a~n) cos kx + b;:) sin kx
k~l

sup [f(x) - fn(x) I ~ A/nq,
-00<",<00

(1)

(2)

(i) ifq is not an integer, that f (p) exist throughout (-00, co), and satisfy
there a Lipschitz condition of order ex;

(ii) if q is an integer, that f(p) (i.e., j<q-l») exist and be continuous in
(- 00, co), and satisfy, for some constant B,

I f(P)(x) - 2f(P)(x + h) + j<P)(x + 2h)! ~ Bh (3)

whenever -co < x < x + 2h < co.

The purpose of the present article is to prove a result of exactly the same
form as Theorem 1 in which the trigonometric polynomials (1) are replaced
by splines in , where n refers not to their degree but to the number of knots,
the knots being equidistant. As to the degree k of the splines, we have

* Present address: Department of Mathematics, University of Rhode Island, Kingston,
Rhode Island 02881.

365
Copyright © 1974 by Academic Press, Inc.
All rights of reproduction in any form reserved.



366 O. SHISHA

complete freedom in its choice as long as q < k + 1. We include, however,
also the case q ~ k + 1.

2

THEOREM 2. Let - 00 < a < b < 00, and let f be a real function with
domain [a, b]. Let q be a positive number, k an integer ~ 1, and define p and ex
as in Theorem 1. A necessary and sufficient condition that (*) there exist a
constant A, andfor n = 1,2,... a realfunctionfn which in each interval

In,j = [a + (b - a) n-1(j - 1), a + (b - a) n-1j], j = 1,2,... , n,

coincides with a polynomial of degree ~ k, and which has a (k - 1) th deriva­
tive throughout (a, b) such that

is

sup I f(x) - fn(x) I ~ Ajnq,
a<x~b

(i) if q is not an integer and q < k + 1, or if q = k + 1, that f(P) exist1

throughout [a, b] and satisfy there a Lipschitz condition of order ex;

(ii) if q is an integer < k + 1, that j<p) (i.e., f(q-l») exist and be con­
tinuous in [a, b], and satisfy, for some constant B, the inequality (3) whenever
a ~ x < x + 2h ~ b;

(iii) ifq > k + 1, that f coincide in [a, b] with some polynomial ofdegree
~k.

Proof Necessity. If q ~ k, necessity follows from the Lemma below,
since p of the Lemma is ~ k - 1. If k < q ~ k + 1, it follows
from Theorem 1 of [6]. Finally, if q > k + 1, it follows from [3] (Korollar,
p.130).

Sufficiency. We may clearly assume q ~ k + 1. Whether or not q is an
integer, ifj<P) exists throughout [a, b] and satisfies there a Lipschitz condition
of order ex, then, by [2, Corollaries 1 and 2, p. 233], (*) of Theorem 2 holds.
Suppose now q is an integer < k + 1, f(P) exists and is continuous in [a, b],
and satisfies (3) whenever a ~ x < x + 2h ~ b. From Theorem 2 of [7]
[(d) implies (a)] it follows that, for n = 1,2,... , there exists a real function Fn

which in each interval In,j , j = 1, 2,... , n, coincides with a polynomial of
degree ~ k - p, and which has a (k - p - 1) th derivative throughout (a, b)
such that maXa<OO<b If(P)(x) - Fn(x) I ~ A *n-1, A * being a constant. If
p = 0, we are through; hence assume p > 0. For n = 1,2,... , let Gn be a real

1 If p ;;;, 1, thenflP) at a and at b, the end points of the domain of f, is understood to
be a one sided pth derivative. Similarly below.
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function with domain [a, b] which in each In,j ,j = 1,2,... , n, coincides with
a polynomial of degree ~ k, and for which G<;:') = Fn(x) throughout (a,
Then IPP-l)(y) - G~P-l)(y) - {f(P-l)(X) - G<;:'-l)(x)} I ~ A *n-1(y -

whenever a ~ x < y ~ b. By the above corollaries in [2], for n = 1,2, ... there
is a real function gn with domain [a, b], which in every In,j, j = 1,2,... , n,
coincides with a polynomial of degree ~ k and which has a (k - 1) th
derivative throughout (a, b) such that maxa<x<b I f(x) - Gn(x) - gn(X) I ~

AjnP+1, A being a constant (independent ofn). We can now takefn = Gn -+- gn,
n = 1,2,.... This completes the proof.

3

LEMMA. Let f be a real function with domain [a, bJ(- 00 < a < b < CX),

let k and p be integers ~ 0, and let°< ex ~ 1. If ex = 1 and k = p + 1, let N
be the set of all numbers 2u3v, u = 0, 1,2,..., v = 0, 1,2,.... Otherwise, let
N = {2°, 2\ 22

, ... }. If ex = 1 and k oF p + 1, let p = p + 1. Otherwise, let
p = p. Suppose there is a constant A, and for every n E N a real function fn
with domain [a, bJfor whichfl,fJ exists throughout (a, b), which in each interval
In,j = [a + (b - a) n-1(j - 1), a + (b - a) n-1j], j = 1, 2, ... , n, coincides
with a polynomial ofdegree ~ k such that

sup If(x) - fn(x)j ~ An-(p+o<J.
a<x~b

Then PP) exists throughout fa, b]. If a < 1, PP) satisfies there a Lipschitz
condition oforder a.lfa = 1, PP) is continuous in fa, b), and there is a constant
B such that I j<p)(x) - 2f(P)(x + h) + j<P)(x + 2h)t ~ Bh whenever

a ~ x < x + 2h ~ b.

Proof. If a = 1 and k = p + 1, let d be an integer ~ O. Otherwise, set
d = 0. Let Vo,aCx) = f3d(x), and for v = 1,2,..., let

Then 2::0 Vv,aCx) converges to f(x) in fa, b]. Also, using the sup norm
over [a, b],

v = 1,2,... ;
(4)
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Using W. A. Markoff's inequality [9, p. 36] in each of the intervals 12V3d,j,

j = 1,2,..., 2v3a, we obtain, for v = 1,2,.,., and h = 0, l, ...,p,

h-l

I] V:~~ II ~ [2v+13aj(b - a)t I] Vv,a II n (k 2
- /)j(2j + 1)

i=O

~ C[2j(b - a)]h DJ (k2 - P)j(2j + 1)] (2v3a)h-p -oc, (5)

where n::~ means 1 if h = 0. Therefore, for h = 0, 1,..., p, 1::0 II V~~J II
converges, and therefore 1::0 V~~J(x) converges uniformly in [a, b]. Hence
throughout [a, b], j!p) exists and equals 1::0 VJ~~(x). Let D denote the
coefficient of (2v3a)h-p -oc in the extreme right member of (5), for h = p, and let
D* = D2-oc(1 - 2-oc). Then throughout [a, b], for m = 0, 1, 2,...,

If (P)(x) - "m V(P)(x)l:S:: "co II yep) II s: D*(2m3a)-oc In particular if
L...v~O v,a "" L...v~m+1 v,a "" . ,

f(P)(x) * 0, as we can and shall assume, k ;?: p. Given n E N, say n = 2m3S, m
and 0 nonnegative integers, set Vn(x) 1::0 V~~l(x), and observe that

in each interval In,j, j = 1, 2, ... , n, Vn(x) coincides with a poly­
nomial of degree ~ k - p; SUPa<x<b Ij!p)(x) - VnCx) I ~ D*n-oc,

and, so, j!p) is continuous in [a, b]; if (X = 1 and k =1= p + 1, (6)
then Vn(x) is differentiable throughout (a, b).

We set Ult) - Vv,o(t), v = 0, 1,2,....

(A) Suppose (X < l,p = 0, so that d = 0. Leta ~ x < y ~ b, and let
if be the smallest positive integer n satisfying 2n(y - x) ;?: b - a. We have:

Ifey) - f(x) I = If Uv(y) - U/x) \ ~ 'I I Uv(y) - U/x) I + 2 ~ II Uv II.
v~o v=O v~ii (7)

Let v ;?: 0. We show

Set

Xj = a + (b - a) 2-'], j = 0, 1,... , 2v• (9)

(a) Assume both x and y belong to some interval [Xj_VXj ], 1 ~ j ~ 2v•

By A. A. Markoff's inequality [9, p. 36] applied to that interval,

I U/y) - Ulx) I = (y - x)1 Uv'(z) I ~ 2v+1k2(b - a)-III Uv II(y - x), x < z < y.
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(b) Suppose the assumption in (a) does not hold. Let

X"_l ~ X < Xr ... ~ Xr+s < Y ~ x r+s+1 , 1 ~ r < 2v, S? o.

369

Then (with L;~l meaning 0 if s = 0), we have by A. A. Markoff's inequality,

I UvCy) - UvCx) [

~ I Uv(y) - Uv(xr+s) I + [t I Uv(xr+j) - Uv(xr+H)ll + I Uv(xr) - U.(x) [
j~l J

Setting E = max (C, 11/11D, we have from (7), (8) and (4):

Ifey) - f(x) [
ii-l co

~ Ek2(b - a)-l (y - x) L 2v+12-0," + 2E L 2-~V

v=O v=n

= 2Ek2(b - a)-l (y - x)[2(l-",jil - 1][21-'" - 1]-1 + 2E2-"'il(l - 2-~)-]

~ F[(y - x) 2(1-",jil + 2-"'ii1,

where F = max [2Ek2(b - a)-l (21-'" - 1)-1, 2E(1 - 2-"')-1J.
By definition of ii, 2 ii(y - x) ? b - a, 2 il(y - x) ~ 2(b - a). So

(y - x)-'" [(y - x) 2(1-",jii + 2-"'ii] ~ {2(b - a)}l-'" + (b - a)-a. Hence
Ifey) - f(x) I ~ L(y - x)"', with L = F[{2(b - a)}l-o< + (b - a)-"'].

(B) Suppose iX < 1, p > O. By (6) and by part (A) applied to j<P), the
latter satisfies in [a, b] a Lipschitz condition of order iX.

(C) Suppose ex = 1, p = 0, k # 1. Let a ~ x < x + 2h ~ b, and let
iii be the largest positive integer n satisfying 2nh ~ b - a. We have

If(x) - 2f(x + h) + f(x + 2h)[

= II UvCx) - 2UvCx + h) + U.(x + 2h) I
v=o

m-l 00

~ L: I Uv(X) - 2U.(x + h) + Uv(X + 2h)[ + 4 L: :[ Uv Ii.
v=O v=m
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Let v:> O. We show

O. SHISHA

I U.(x) - 2U.(x + h) + Ulx + 2h)1 ~ Gh22v,

G = (8/3) E(b - a)-2 k2(k2 - 1).

Now

U = Uv(x) - 2UvCx + h) + U.(x + 2h)

= Uv(x + 2h) ~ Uv(x + h) - {U.(x + h) - U.(x)}

= h(Uv'(z) - Uv'(y)),

(11)

where x < y < x + h < z < x + 2h. If [using the notation (9)] both y and z
lie in some [Xi-l' Xj], 1 ~j :(; 2v, then U = h(z - y) U:(w), y < W < z, and
by W. A. Markoff's inequality applied to [Xj-l , Xj],

which, by (4), implies (11). If Y and z do not belong to the same [Xj_l , Xj], let
Xr- 1 ~ Y < Xr ... ~ xr+s < Z ~ Xr+S+l' 1 ~ r < 2v, S :> O. By (4) and
inequalities similar to (12) we get again (11), since

I Uv'(Z) - Uv'(y)\

:(; I Uv'(z) - Uv'(xr+s)! + [tl \U/(xr+j) - Uv'(Xr+i-l)I] + I Uv'(xr) - Uv'(y) I

~ (4/3) E(b - a)-2 k2(P - 1) 2v [z - Xr+S + ltl Xr+i - Xr+j-11 + Xr - Y]

~ Gh2v.

By (10), (11) and (4), If(x) - 2f(x + h) + f(x + 2h)\ :(; Gh22fit + 8e2-fit
•

Now (b - a)/(2h) < 2fit
:(; (b - a)/h, and hence

If(x) - 2f(x + h) + f(x + 2h)\ :(; [G(b - a) + 16C(b - a)-l] h.

(D) More generally, suppose ex = 1, k 01= p + 1. In view of (6), we can
apply the Lemma to f<p), with k replaced by k - p and withp of the Lemma
taken as 0, and obtain the desired conclusion.

(E) Suppose ex = 1, P = 0, k = 1. The method used in [8], p. 397, to
prove sufficiency, clearly establishes also the Lemma in the present case.
Namely, let a :(; x < x + 2h :(; b, and let no be the largest n E N (i.e., n of
the form 2u3v ; u = 0, 1,... , v = 0, 1, ...) for which [x, x + 2h] is contained in
some In,j, 1 :(;j :(; n. Then 2h > (b - a)(6no)-1. For, otherwise, if, say,
[x, x + 2h] C Ino,fo ' 1 :(;jo :(; no , then [x, x + 2h] would lie either in one of
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the two closed halves of Ino,io or in the (open) middle third of Ino,ic . In each
case, the maximality of no is contradicted. By the linearity offn in [x, x + 2h],

o
we have

I f(x) - 2f(x + h) + f(x + 2h)1

l{f(x) - fno(X)} - 2{f(x + h) - fnoex + h)}

+ {f(x + 2h) - fno(x + 2h)}:

~ 4A/no ~ 48A(b - a)-l h.

(F) Suppose, finally, 01 = 1, k = p + 1. In view of (6), we can apply
the Lemma to fl P ), with k replaced by k - p and with p of the Lemma taken
as O.
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