Characterization of Smoothness Properties of Functions by Means of Their Degree of Approximation by Splines

O. Shisha*

Mathematics Research Center, Code 7840, Naval Research Laboratory, Washington, D.C. 20375

1

One of the major achievements of approximation theory is the following:

THEOREM 1. (D. Jackson [5], S. N. Bernstein [1], A. Zygmund [10]). Let f be a real function with domain $(-\infty, \infty)$, and period 2π . Let q be a positive number, let p be the largest integer smaller than q, and set $\alpha = q - p$, so that $q = p + \alpha$, $0 < \alpha \leq 1$. A necessary and sufficient condition that there exist a constant A, and for n = 1, 2, ... a real trigonometric polynomial

$$f_n(x) = a_0^{(n)} + \sum_{k=1}^n a_k^{(n)} \cos kx + b_k^{(n)} \sin kx$$
(1)

such that

$$\sup_{-\infty < x < \infty} |f(x) - f_n(x)| \leq A/n^{\alpha},$$
(2)

is

(i) if q is not an integer, that $f^{(p)}$ exist throughout $(-\infty, \infty)$, and satisfy there a Lipschitz condition of order α ;

(ii) if q is an integer, that $f^{(p)}$ (i.e., $f^{(q-1)}$) exist and be continuous in $(-\infty, \infty)$, and satisfy, for some constant B,

$$|f^{(p)}(x) - 2f^{(p)}(x+h) + f^{(p)}(x+2h)| \le Bh$$
(3)

whenever $-\infty < x < x + 2h < \infty$.

The purpose of the present article is to prove a result of exactly the same form as Theorem 1 in which the trigonometric polynomials (1) are replaced by splines f_n , where *n* refers not to their degree but to the number of knots, the knots being equidistant. As to the degree k of the splines, we have

* Present address: Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881.

complete freedom in its choice as long as q < k + 1. We include, however, also the case $q \ge k + 1$.

2

THEOREM 2. Let $-\infty < a < b < \infty$, and let f be a real function with domain [a, b]. Let q be a positive number, k an integer ≥ 1 , and define p and α as in Theorem 1. A necessary and sufficient condition that (*) there exist a constant A, and for n = 1, 2, ... a real function f_n which in each interval

$$I_{n,j} = [a + (b - a) n^{-1}(j - 1), a + (b - a) n^{-1}j], j = 1, 2, ..., n,$$

coincides with a polynomial of degree $\leq k$, and which has a (k - 1) th derivative throughout (a, b) such that

$$\sup_{a\leqslant x\leqslant b}|f(x)-f_n(x)|\leqslant A/n^q,$$

is

(i) if q is not an integer and q < k + 1, or if q = k + 1, that $f^{(p)}$ exist¹ throughout [a, b] and satisfy there a Lipschitz condition of order α ;

(ii) if q is an integer $\langle k + 1 \rangle$, that $f^{(p)}$ (i.e., $f^{(q-1)}$) exist and be continuous in [a, b], and satisfy, for some constant B, the inequality (3) whenever $a \leq x < x + 2h \leq b$;

(iii) if q > k + 1, that f coincide in [a, b] with some polynomial of degree $\leq k$.

Proof. Necessity. If $q \leq k$, necessity follows from the Lemma below, since \tilde{p} of the Lemma is $\leq k - 1$. If $k < q \leq k + 1$, it follows from Theorem 1 of [6]. Finally, if q > k + 1, it follows from [3] (Korollar, p. 130).

Sufficiency. We may clearly assume $q \leq k + 1$. Whether or not q is an integer, if $f^{(p)}$ exists throughout [a, b] and satisfies there a Lipschitz condition of order α , then, by [2, Corollaries 1 and 2, p. 233], (*) of Theorem 2 holds. Suppose now q is an integer $\langle k + 1, f^{(p)}$ exists and is continuous in [a, b], and satisfies (3) whenever $a \leq x < x + 2h \leq b$. From Theorem 2 of [7] [(d) implies (a)] it follows that, for n = 1, 2, ..., there exists a real function F_n which in each interval $I_{n,j}$, j = 1, 2, ..., n, coincides with a polynomial of degree $\leq k - p$, and which has a (k - p - 1) th derivative throughout (a, b) such that $\max_{a \leq x \leq b} |f^{(p)}(x) - F_n(x)| \leq A^*n^{-1}$, A^* being a constant. If p = 0, we are through; hence assume p > 0. For n = 1, 2, ..., let G_n be a real

¹ If $p \ge 1$, then $f^{(p)}$ at *a* and at *b*, the end points of the domain of *f*, is understood to be a one sided *p*th derivative. Similarly below.

function with domain [a, b] which in each $I_{n,j}$, j = 1, 2, ..., n, coincides with a polynomial of degree $\leq k$, and for which $G_n^{(p)} = F_n(x)$ throughout (a, b). Then $|f^{(p-1)}(y) - G_n^{(p-1)}(y) - \{f^{(p-1)}(x) - G_n^{(p-1)}(x)\}| \leq A^*n^{-1}(y-x)$ whenever $a \leq x < y \leq b$. By the above corollaries in [2], for n = 1, 2, ... there is a real function g_n with domain [a, b], which in every $I_{n,j}$, j = 1, 2, ..., n, coincides with a polynomial of degree $\leq k$ and which has a (k - 1) th derivative throughout (a, b) such that $\max_{a \leq x \leq b} |f(x) - G_n(x) - g_n(x)| \leq A/n^{p+1}$, A being a constant (*independent of n*). We can now take $f_n = G_n + g_n$, n = 1, 2, ... This completes the proof.

3

LEMMA. Let f be a real function with domain [a, b] $(-\infty < a < b < \infty)$, let k and p be integers ≥ 0 , and let $0 < \alpha \le 1$. If $\alpha = 1$ and k = p + 1, let N be the set of all numbers $2^u 3^v$, u = 0, 1, 2, ..., v = 0, 1, 2, ... Otherwise, let $N = \{2^0, 2^1, 2^2, ...\}$. If $\alpha = 1$ and $k \neq p + 1$, let $\tilde{p} = p + 1$. Otherwise, let $\tilde{p} = p$. Suppose there is a constant A, and for every $n \in N$ a real function f_n with domain [a, b] for which $f_n^{(\tilde{p})}$ exists throughout (a, b), which in each interval $I_{n,j} = [a + (b - a) n^{-1}(j - 1), a + (b - a) n^{-1}j], j = 1, 2, ..., n$, coincides with a polynomial of degree $\le k$ such that

$$\sup_{a\leqslant x\leqslant b}|f(x)-f_n(x)|\leqslant An^{-(p+\alpha)}.$$

Then $f^{(p)}$ exists throughout [a, b]. If $\alpha < 1$, $f^{(p)}$ satisfies there a Lipschitz condition of order α . If $\alpha = 1$, $f^{(p)}$ is continuous in [a, b], and there is a constant B such that $|f^{(p)}(x) - 2f^{(p)}(x+h) + f^{(p)}(x+2h)| \leq Bh$ whenever

$$a \leq x < x + 2h \leq b$$
.

Proof. If $\alpha = 1$ and k = p + 1, let d be an integer ≥ 0 . Otherwise, set d = 0. Let $V_{0,d}(x) \equiv f_{3d}(x)$, and for $\nu = 1, 2, ...,$ let

$$V_{\nu,d}(x) \equiv f_{2\nu_3 d}(x) - f_{2\nu - 1_3 d}(x).$$

Then $\sum_{\nu=0}^{\infty} V_{\nu,d}(x)$ converges to f(x) in [a, b]. Also, using the sup norm over [a, b],

$$\|V_{\nu,d}\| \leq \|f_{2^{\nu_3 d}} - f\| + \|f - f_{2^{\nu-13^d}}\| \leq C(2^{\nu_3 d})^{-(p+\alpha)},$$

$$\nu = 1, 2, ...; \qquad C = A(1 + 2^{p+\alpha}).$$
(4)

Using W. A. Markoff's inequality [9, p. 36] in each of the intervals $I_{2^{\nu_3 d_j}}$, $j = 1, 2, ..., 2^{\nu_3 d}$, we obtain, for $\nu = 1, 2, ...,$ and h = 0, 1, ..., p,

$$|| V_{\nu,\vec{a}}^{(h)} || \leq [2^{\nu+1}3^d/(b-a)]^h || V_{\nu,\vec{a}} || \prod_{j=0}^{h-1} (k^2 - j^2)/(2j+1)$$
$$\leq C[2/(b-a)]^h \left[\prod_{j=0}^{h-1} (k^2 - j^2)/(2j+1) \right] (2^{\nu}3^d)^{h-p-\alpha}, \qquad (5)$$

where $\prod_{j=0}^{h-1}$ means 1 if h = 0. Therefore, for h = 0, 1, ..., p, $\sum_{\nu=0}^{\infty} || V_{\nu,d}^{(h)} ||$ converges, and therefore $\sum_{\nu=0}^{\infty} V_{\nu,d}^{(h)}(x)$ converges uniformly in [a, b]. Hence throughout [a, b], $f^{(p)}$ exists and equals $\sum_{\nu=0}^{\infty} V_{\nu,d}^{(p)}(x)$. Let D denote the coefficient of $(2^{\nu}3^d)^{h-p-\alpha}$ in the extreme right member of (5), for h = p, and let $D^* = D2^{-\alpha}(1 - 2^{-\alpha})$. Then throughout [a, b], for $m = 0, 1, 2, ..., |f^{(p)}(x) - \sum_{\nu=0}^{m} V_{\nu,d}^{(p)}(x)| \leq \sum_{\nu=m+1}^{\infty} || V_{\nu,d}^{(p)} || \leq D^*(2^m3^d)^{-\alpha}$. In particular, if $f^{(p)}(x) \neq 0$, as we can and shall assume, $k \geq p$. Given $n \in N$, say $n = 2^m3^{\delta}$, mand δ nonnegative integers, set $V_n(x) \equiv \sum_{\nu=0}^{m} V_{\nu,\delta}^{(p)}(x)$, and observe that

in each interval $I_{n,i}$, j = 1, 2, ..., n, $V_n(x)$ coincides with a polynomial of degree $\leq k - p$; $\sup_{a \leq a \leq b} |f^{(p)}(x) - V_n(x)| \leq D^* n^{-\alpha}$, and, so, $f^{(p)}$ is continuous in [a, b]; if $\alpha = 1$ and $k \neq p + 1$, (6) then $V_n(x)$ is differentiable throughout (a, b).

We set $U_{\nu}(t) \equiv V_{\nu,0}(t), \nu = 0, 1, 2, \dots$

(A) Suppose $\alpha < 1$, p = 0, so that d = 0. Let $a \le x < y \le b$, and let \tilde{n} be the smallest positive integer n satisfying $2^n(y - x) \ge b - a$. We have:

$$|f(y) - f(x)| = \left|\sum_{\nu=0}^{\infty} U_{\nu}(y) - U_{\nu}(x)\right| \leq \sum_{\nu=0}^{\tilde{n}-1} |U_{\nu}(y) - U_{\nu}(x)| + 2\sum_{\nu=\tilde{n}}^{\infty} ||U_{\nu}||.$$
(7)

Let $\nu \ge 0$. We show

$$|U_{\nu}(y) - U_{\nu}(x)| \leq 2^{\nu+1}k^{2}(b-a)^{-1} ||U_{\nu}||(y-x).$$
(8)

Set

$$x_j = a + (b - a) 2^{-\nu} j, \quad j = 0, 1, ..., 2^{\nu}.$$
 (9)

(a) Assume both x and y belong to some interval $[x_{j-1}, x_j]$, $1 \le j \le 2^{\nu}$. By A. A. Markoff's inequality [9, p. 36] applied to that interval,

$$|U_{\nu}(y) - U_{\nu}(x)| = (y - x)|U_{\nu}'(z)| \leq 2^{\nu+1}k^2(b - a)^{-1} ||U_{\nu}||(y - x), \ x < z < y.$$

(b) Suppose the assumption in (a) does not hold. Let

$$x_{r-1} \leqslant x < x_r \cdots \leqslant x_{r+s} < y \leqslant x_{r+s+1}, \quad 1 \leqslant r < 2^{\nu}, \quad s \geqslant 0.$$

Then (with $\sum_{j=1}^{s}$ meaning 0 if s = 0), we have by A. A. Markoff's inequality,

$$| U_{\nu}(y) - U_{\nu}(x) |$$

$$\leq | U_{\nu}(y) - U_{\nu}(x_{r+s}) | + \left[\sum_{j=1}^{s} | U_{\nu}(x_{r+j}) - U_{\nu}(x_{r+j-1}) | \right] + | U_{\nu}(x_{r}) - U_{\nu}(x) |$$

$$\leq 2^{\nu+1}k^{2}(b-a)^{-1} || U_{\nu} || \left[y - x_{r+s} + \left\{ \sum_{j=1}^{s} x_{r+j} - x_{r+j-1} \right\} + x_{r} - x \right]$$

$$= 2^{\nu+1}k^{2}(b-a)^{-1} || U_{\nu} || (y-x).$$

Setting $E = \max(C, ||f_1||)$, we have from (7), (8) and (4):

$$\begin{split} |f(y) - f(x)| \\ \leqslant Ek^{2}(b-a)^{-1} (y-x) \sum_{\nu=0}^{\tilde{n}-1} 2^{\nu+1} 2^{-\alpha\nu} + 2E \sum_{\nu=\tilde{n}}^{\infty} 2^{-\alpha\nu} \\ &= 2Ek^{2}(b-a)^{-1} (y-x) [2^{(1-\alpha)\tilde{n}} - 1] [2^{1-\alpha} - 1]^{-1} + 2E2^{-\alpha\tilde{n}} (1-2^{-\alpha})^{-1} \\ &\leqslant F[(y-x) 2^{(1-\alpha)\tilde{n}} + 2^{-\alpha\tilde{n}}], \end{split}$$

where $F = \max \left[2Ek^2(b-a)^{-1} (2^{1-\alpha}-1)^{-1}, 2E(1-2^{-\alpha})^{-1} \right].$

By definition of \tilde{n} , $2^{\tilde{n}}(y-x) \ge b-a$, $2^{\tilde{n}}(y-x) \le 2(b-a)$. So $(y-x)^{-\alpha} [(y-x) 2^{(1-\alpha)\tilde{n}} + 2^{-\alpha\tilde{n}}] \le \{2(b-a)\}^{1-\alpha} + (b-a)^{-\alpha}$. Hence $|f(y) - f(x)| \le L(y-x)^{\alpha}$, with $L = F[\{2(b-a)\}^{1-\alpha} + (b-a)^{-\alpha}]$.

(B) Suppose $\alpha < 1$, p > 0. By (6) and by part (A) applied to $f^{(p)}$, the latter satisfies in [a, b] a Lipschitz condition of order α .

(C) Suppose $\alpha = 1$, p = 0, $k \neq 1$. Let $a \leq x < x + 2h \leq b$, and let \tilde{m} be the largest positive integer n satisfying $2^{n}h \leq b - a$. We have

$$|f(x) - 2f(x+h) + f(x+2h)|$$

$$= \left| \sum_{\nu=0}^{\infty} U_{\nu}(x) - 2U_{\nu}(x+h) + U_{\nu}(x+2h) \right|$$

$$\leqslant \sum_{\nu=0}^{\tilde{m}-1} |U_{\nu}(x) - 2U_{\nu}(x+h) + U_{\nu}(x+2h)| + 4 \sum_{\nu=\tilde{m}}^{\infty} ||U_{\nu}||. \quad (10)$$

Let $\nu \ge 0$. We show

$$|U_{\nu}(x) - 2U_{\nu}(x+h) + U_{\nu}(x+2h)| \leq Gh^{2}2^{\nu},$$

$$G = (8/3) E(b-a)^{-2} k^{2}(k^{2}-1).$$
(11)

Now

$$U = U_{\nu}(x) - 2U_{\nu}(x+h) + U_{\nu}(x+2h)$$

= $U_{\nu}(x+2h) - U_{\nu}(x+h) - \{U_{\nu}(x+h) - U_{\nu}(x)\}$
= $h(U_{\nu}'(z) - U_{\nu}'(y)),$

where x < y < x + h < z < x + 2h. If [using the notation (9)] both y and z lie in some $[x_{j-1}, x_j]$, $1 \le j \le 2^{\nu}$, then $U = h(z - y) U''_{\nu}(w)$, y < w < z, and by W. A. Markoff's inequality applied to $[x_{j-1}, x_j]$,

$$|U_{\nu}''(w)| \leq 2^{2\nu+2}(b-a)^{-2} \, 3^{-1}k^2(k^2-1) \, \| \, U_{\nu} \, \|, \tag{12}$$

which, by (4), implies (11). If y and z do not belong to the same $[x_{j-1}, x_j]$, let $x_{r-1} \leq y < x_r \cdots \leq x_{r+s} < z \leq x_{r+s+1}$, $1 \leq r < 2^{\nu}$, $s \geq 0$. By (4) and inequalities similar to (12) we get again (11), since

$$|U_{\nu}'(z) - U_{\nu}'(y)| \leq |U_{\nu}'(z) - U_{\nu}'(x_{r+s})| + \left[\sum_{j=1}^{s} |U_{\nu}'(x_{r+j}) - U_{\nu}'(x_{r+j-1})|\right] + |U_{\nu}'(x_{r}) - U_{\nu}'(y)| \leq (4/3) E(b-a)^{-2} k^{2}(k^{2}-1) 2^{\nu} \left[z - x_{r+s} + \left\{\sum_{j=1}^{s} x_{r+j} - x_{r+j-1}\right\} + x_{r} - y\right] \leq Gh2^{\nu}.$$

By (10), (11) and (4), $|f(x) - 2f(x+h) + f(x+2h)| \le Gh^2 2^{\tilde{m}} + 8C2^{-\tilde{m}}$. Now $(b-a)/(2h) < 2^{\tilde{m}} \le (b-a)/h$, and hence

$$|f(x) - 2f(x+h) + f(x+2h)| \leq [G(b-a) + 16C(b-a)^{-1}]h.$$

(D) More generally, suppose $\alpha = 1, k \neq p + 1$. In view of (6), we can apply the Lemma to $f^{(p)}$, with k replaced by k - p and with p of the Lemma taken as 0, and obtain the desired conclusion.

(E) Suppose $\alpha = 1$, p = 0, k = 1. The method used in [8], p. 397, to prove sufficiency, clearly establishes also the Lemma in the present case. Namely, let $a \leq x < x + 2h \leq b$, and let n_0 be the largest $n \in N$ (i.e., n of the form $2^{u_3 v}$; u = 0, 1, ..., v = 0, 1, ...) for which [x, x + 2h] is contained in some $I_{n,j}$, $1 \leq j \leq n$. Then $2h > (b - a)(6n_0)^{-1}$. For, otherwise, if, say, $[x, x + 2h] \subseteq I_{n_0, j_0}$, $1 \leq j_0 \leq n_0$, then [x, x + 2h] would lie either in one of the two closed halves of I_{n_0,i_0} or in the (open) middle third of I_{n_0,i_0} . In each case, the maximality of n_0 is contradicted. By the linearity of f_{n_0} in [x, x + 2h], we have

$$|f(x) - 2f(x + h) + f(x + 2h)|$$

= $|\{f(x) - f_{n_0}(x)\} - 2\{f(x + h) - f_{n_0}(x + h)\}$
+ $\{f(x + 2h) - f_{n_0}(x + 2h)\}|$
 $\leq 4A/n_0 \leq 48A(b - a)^{-1}h.$

(F) Suppose, finally, $\alpha = 1$, k = p + 1. In view of (6), we can apply the Lemma to $f^{(p)}$, with k replaced by k - p and with p of the Lemma taken as 0.

References

- S.N. BERNSTEIN, Sur l'ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné, Mém. Acad. Royale Belg. 4 (1912), 1–104.
- 2. C. DE BOOR, On uniform approximation by splines, J. Approximation Theory 1 (1968), 219–235.
- 3. D. GAIER, Saturation bei Spline-Approximation und Quadratur, Numer. Math. 16 (1970), 129–140.
- 4. D. JACKSON, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Dissertation, Göttingen, 1911.
- 5. D. JACKSON, "The Theory of Approximation," American Mathematical Society, New York, 1930.
- 6. F. RICHARDS, On the saturation class for spline functions, *Proc. Amer. Math. Soc.* 33 (1972), 471–476.
- K. SCHERER, On the best approximation of continuous functions by splines, SIAM J. Numer. Anal. 7 (1970), 418-423.
- O. SHISHA, A characterization of functions having Zygmund's property, J. Approximation Theory 9 (1973), 395–397.
- 9. J. TODD, "Introduction to the Constructive Theory of Functions," Academic Press, New York, 1963.
- 10. A. ZYGMUND, Smooth functions, Duke Math. J. 12 (1945), 47-76.